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Background 

The role played by morphological defects (md’s) on thermal conductivity 
and phonon MFPs has been the subject of a wealth of papers recently 
appeared in literature. 
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Aim of this work 

 

• Investigate the interplay among md size and density 

• Compare thermal conductivity trends when fixed-size md’s are also 
present 

 

• Reference system is silicon, both single- and nano-crystalline 

• Fixed-size md’s are grain boundaries (GBs) 

• Variable-size md’s are nanovoids (NVs) 
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G. F. Cerofolini et al., Mater. Sci. Eng., R; 27 (2000) 1-52 

Helium implantation 
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500 – 1000 °C 

  
1000 °C 

B6S1, B6S2, B6S3, 
B6S4, B6S5, B6S6  

Six-step annealing One-step annealing 

B1S1 

He+ 

Sample preparation & TDTR 
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Double I2 on 450-nm thick nanocrystalline Si 
films grown by CVD on oxidized Si 
1. 90 keV, 41016 cm-2 

2. 58 keV, 1.51016 cm-2 

 

Mode-locked 
laser 

1064 nm 
9 ps/82 MHz 

Delay Stage 

EOM 

SHG 
CCD 

camera Objective 

Sample 

Probe Beam 

Pump Beam 



Sample B6S1: Annealed at 500°C  

WITHIN THE GRAINS: 
Void diameter dp ≈ 2 - 4 nm 
Void density ≈ 3 x 1017 cm-3 

Void spacing ds ≈ 11 nm 

 

Larger NVs 
around GBs 

Sample B6S6: After the whole cycle 

Coalescence of voids as in the  
single-crystal case 
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NV Shape and Distribution 

B. Lorenzi, et al.; J. Electron. Mater., 43 (2014) 3852-3856 
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Sample B1S1: Annealed at 1000°C  

 
Void diameter dp ≈ 1 - 2 nm 
Void density ≈ 2 x 1018 cm-3 

Void spacing ds ≈ 6 - 9 nm 

 

Porosity ≈ 0.54 %  

B. Lorenzi, et al.; J. Electron. Mater., 43 (2014) 3852-3856 

Sample B6S1: Annealed at 500°C  

WITHIN THE GRAINS: 
Void diameter dp ≈ 2 - 4 nm 
Void density ≈ 3 x 1017 cm-3 

Void spacing ds ≈ 11 nm 

 

Porosity ≈ 0.49 %  
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NV Shape and Distribution 
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κ vs. ds, dp  

Eucken model not valid  
 
 
 

(φ constant) 

𝜅 tunable with thermal 
processing 

J. Tang et al., Nano Lett., 10 (2010) 4279–4283   

A. Eucken, Ceram. Abstr. 11 (1932) 576 
A. S. Henry & G. Chen, J. Comput. Theor. Nanosci. 5 (2008) 1–12. 
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A possible explanation  

Fixed Porosity 
0.5 %  
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If porosity φ is constant, ds  dp    
 
Thus, the spacing ds between scattering 
centers scale with the roughness dp of the 
scattering surface. 
• ds sets the MFP of scattered phonons 
• dp sets the wavelength range of 

scattered phonons 
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• With no NV, MFP is limited by GB only, affecting phonons with λ < dGB=50 nm 
• For large ds, dp ( dGB) NVs have little effect as they scatter phonons already scattered 

by GBs (B6S6 and B6S5) 
• The more ds and dp decrease, the more the MFP of phonons with λ < dp decreases (MFP 

 ds) (B6S3, B6S2 and B6S1), i.e. NVs decrease the MFP of phonons with λ < dp to  ds   
• For very small ds and dp (B1S1) NVs scatter phonons of very low λ (< dp  1 nm), that 

however marginally contribute to κ. Thus they are ineffective on κ, that gets back to its 
NV-free value 

Concurrent scattering at NVs and GBs 



• Time-dependent temperature difference 
between the two regions 
 
 

 
 where:  
 κ is the thermal conductivity 
 ρ  and cV density and specific heat 
 αn=2πn/Lz 

 Cn=8(Thot-Tcold)[cos(αnLz/2)-1]2/(αnL) 
 

 

• ΔT is fitted to obtain κ 
 

 

• AEMD solution of heat-transport equation under PBC for an initial step-
like initial temperature profile 
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Computational framework 
Method: Approach-to-Equilibrium Molecular Dynamics 

C. Melis et al., Eur. Phys. J. B. 87, 96 (2014) 



Computational framework 
 Investigated systems: 

•Ordered porous sc-Si (OPscSi) 

•Random porous sc-Si (RPscSi) 

•Quasi-random porous nc-Si (RPncSi) 

 

In OPscSi the porosity φ=φ(Np, dp) actually depends 
on the number of NVs (Np) and on NV diameter (dp) 

In RPscSi a uniform φ is generated along the sample 

 

 

Simulation protocol: 

1. high-temperature simulated annealing 

2. careful equilibration at room temperature 

3. inner surfaces fully relaxed to a highly-defected 
structure 

4. used EDIP potential [Justo et al., PRB 58 (1998) 2539] 
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Trends in ncSi  
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 = 0.5 % However, no ‘inversion point’ was found 



• NV distribution in the simulation is not uniform, NV segregating 
close to the GBs (thus, ds  dp ) 

 

• NVs may not be fully described by their size, i.e. termination of 
inner surfaces by e.g. H may make ultrasmall NVs qualitatively 
different from standard NVs 
E. Romano et al., Surf. Interf. Anal., 42 (2010) 1307; E. Romano et al., Surf. Interf. Anal.,  42 (2010) 1321; G.F. Cerofolini et 
al., Surf. Sci., 604 (2010) 1215 

 

• Other ideas? 
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Possible reasons for the discrepancy 



• Ion implantation demonstrated a suitable technique to introduce 
controlled porosity in silicon 

• NVs were found to modulate κ depending on their spacing and 
size 

• Euken model of thermal conductivity was falsified 

• AEMD simulation quantitatively confirmed the effect of NV in 
ncSi on κ 

• Gray model of thermal conductivity confirmed inadequate to 
explain the physics of the system 

 

• A question remains open about why ultrasmall NVs do not impact 
on κ 
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Summary and Conclusions 
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