Explicitly accounting for the heat sink strengths in the thermal matching of thermoelectric devices. A unified practical approach

Dario Narducci
University of Milano Bicocca
dario.narducci@unimib.it



#### Summary

- Why accounting for heat sink strengths
- The 1D Model
- Dirichlet and Neumann solutions as special cases
- The general solution: impact of
  - dissipation
  - heat current
- Optimizing leg length in bulk and nanostructured systems
- Conclusions and outlook

#### **Motivations**

Heat source strengths may widely differ, and this makes the choice of actual BCs critical

#### bulk heat conversion



al. et G. Chen, Nature Materials 10, 532-538 (2011)

#### body heat harvesting



Sun Jin Kim et al., Energy Environ. Sci., 2014, 7, 1959-1965



M. Codecasa et al., J. Electron. Mater., (2014) 10.1007/s11664-014-3297-9

#### The standard model

Standard models set as TE system the TEG + dissipators, solving heat (or Domenicali) equation by imposing either fixed-temperature or fixed-flow BCs.

In general, neither of them is correct:

- no real heat power sinks can fix boundary temperatures for arbitrarily small  $R_{th}$
- no real heat power source can provide constant heat currents for extremely large R

$$w = \frac{(\alpha \Delta T)^2}{R_{\text{el}}}$$



V. Leonov, P. Fiorini, and R. J. Vullers, Microelectr. J. 42, 579 (2011)

V. Leonov and P. Fiorini, in Proc. 5th Eur. Conf. Thermoelectrics (2007), p. 129.

## Geometry optimization in the standard model

#### As a result

- under fixed- $\phi$  BCs for  $R \to \infty$  both  $\Delta T$  and  $w \to \infty$  suggesting long TE legs and/or small TE cross sections
- under fixed-T BCs for  $R \rightarrow 0$  both  $\phi$  and  $w \rightarrow \infty$  suggesting short TE legs and/or large TE cross sections

Optimization of geometry requires an *a priori* assumption about the BCs better approximating the actual scenario

Aim of this work is to propose a different way of modeling TEGs avoiding any BC stipulation

#### The model



In the proposed model the system encompasses the TEG, the heat source, and the heat sink. The whole system is in thermal contact with the ambient. Fixed- $T(T_A)$  BC are there bound to apply.

## Model equation

$$\begin{cases} \kappa_{\text{TE}} T_2''(x) + q_{\text{TE}}(x) = 0 \\ \bar{h}_{\text{c}}(T_2(d_{\text{TE}}) - T_{\text{A}}) = -\kappa_{\text{TE}} T_2'(d_{\text{TE}}) \\ \kappa_{\text{H}} T_1''(x) + q_{\text{H}}(x) = 0 \\ \bar{h}_{\text{h}}(T_1(-d_{\text{H}}) - T_{\text{A}}) = \kappa_{\text{H}} T_1'(-d_{\text{H}}) \\ \kappa_{\text{TE}} T_2'(0) = \kappa_{\text{H}} T_1'(0) \\ T_1(0) = T_2(0) \end{cases}$$

$$q_{\text{H}}(x) \equiv \frac{\theta_{\text{H}}}{d_{\text{H}}} \Pi\left(\frac{x}{d_{\text{H}}} + \frac{1}{2}\right) > 0$$

$$q_{\text{TE}}(x) \equiv -\frac{\theta_{\text{TE}}}{d_{\text{TE}}} \Pi\left(\frac{x}{d_{\text{TE}}} - \frac{1}{2}\right) < 0$$

## Dimensionless equation

$$\begin{cases} v_2''(\hat{x}) = \mu_3 \Pi(\hat{x} - \frac{1}{2}) \\ v_2(1) = -\mu_5 v_2'(1) \\ v_1''(\hat{x}) = -\mu_2 \mu_1^{-2} \Pi(\hat{x} \mu_1^{-1} + \frac{1}{2}) \\ v_1(-\mu_1) = \mu_4 \mu_1 v_1'(-\mu_1) \\ v_1'(0) = \mu_6 v_2'(0) \\ v_1(0) = v_2(0) \end{cases}$$

#### Reduced variables:

$$\hat{x} \equiv x / d_{\text{TE}}$$

$$v(\hat{x}) \equiv T(x) / T_A - 1$$

$$\mu_1 \equiv d_H / d_{\text{TE}}$$

$$\mu_2 \equiv \theta_H d_H / (T_A \kappa_H)$$

$$\mu_3 \equiv \theta_{\text{TE}} d_{\text{TE}} / (T_A \kappa_{\text{TE}})$$

$$\mu_4 \equiv \kappa_H / (d_H \overline{h}_h)$$

$$\mu_5 \equiv \kappa_{\text{TE}} / (d_{\text{TE}} \overline{h}_c)$$

$$\mu_6 \equiv \kappa_{\text{TE}} / \kappa_H$$

## Reconciling with Neumann and Dirichlet





For ideally dissipating cold sides and perfectly insulated heat sources (1/ $\mu_4 = \mu_5 = 0$ ) constant heat flow BCs are recovered for  $\mu_1>1$  (Neumann)

### Reconciling with Neumann and Dirichlet





For ideally dissipating cold sides and perfectly insulated heat sources (1/ $\mu_4 = \mu_5 = 0$ ) constant temperature BCs are recovered for  $\mu_1$ <1 (Dirichlet)

Ideal dissipation conditions show that proper BCs switch upon  $d_{\rm H}/d_{\rm TE}$  ratio

$$\mu_{1} \equiv d_{\mathrm{H}} / d_{\mathrm{TE}}$$

$$\Delta v \equiv v_{H} - v_{C} = (T_{\mathrm{H}} - T_{\mathrm{C}}) / T_{\mathrm{a}}$$



If the hot side is not perfectly insulated (or the heat source strength decreases) constant temperature/heat flow BCs do not apply around  $\mu_1$ = 1. Since typical  $\mu_1$  for TEGs are between 10<sup>-1</sup>- 10<sup>1</sup> (bulk) and 10<sup>6</sup> (micro/nano), application of standard analyses may mislead optimization of leg lengths.

 $\mu_2 \equiv \theta_{\rm H} d_{\rm H} / (T_{\rm a} \kappa_{\rm H})$ 

### Power output



For sub-ideal hot side insulation or low heat source strength, power output remains constant in the  $\mu_1 \to 0$  limit. Thus, TE legs should fulfill  $\frac{d_{\rm TE}}{d_{\rm H}} < \mu_1^*$  (relevant for bulk TEGs).

### ZT, PF, $\kappa$ , and leg lengths

The solution of the ODE's reads

$$v_i(\hat{x}) = \sum_{j=0}^{2} (\beta_{ji} / \beta_D) \hat{x}^j$$
 with  $\beta_{ij} = \beta_{ij} (... \mu_k ...)$ 

$$\mu_{1} \equiv d_{\mathrm{H}} / d_{\mathrm{TE}} \qquad \qquad \mu_{2} \equiv \theta_{\mathrm{H}} d_{\mathrm{H}} / (T_{\mathrm{A}} \kappa_{\mathrm{H}}) = \theta_{\mathrm{H}} R_{\mathrm{H}} / T_{\mathrm{A}}$$

$$\mu_{6} \equiv \kappa_{\mathrm{TE}} / \kappa_{\mathrm{H}} \qquad \qquad \mu_{3} \equiv \theta_{\mathrm{TE}} d_{\mathrm{TE}} / (T_{\mathrm{A}} \kappa_{\mathrm{TE}}) = \theta_{\mathrm{TE}} R_{\mathrm{TE}} / T_{\mathrm{A}}$$

$$\mu_{4} \equiv \kappa_{\mathrm{H}} / (d_{\mathrm{H}} \overline{h}_{\mathrm{h}}) = 1 / (R_{\mathrm{H}} \overline{h}_{\mathrm{h}}) \qquad \mu_{5} \equiv \kappa_{\mathrm{TE}} / (d_{\mathrm{TE}} \overline{h}_{\mathrm{c}}) = 1 / (R_{\mathrm{TE}} \overline{h}_{\mathrm{c}})$$

Since  $\kappa$ 's and d's enter the solution independently, the optimization of the TEG geometry will depend on material properties not only through ZT but also through PF and  $\kappa$  separately.

D. Narducci, J. Nanoeng. Nanomanuf. 1 (2011) 63–70. D. Narducci, Appl. Phys. Lett. 99 (2011) 102104.

### Branched (shunted) thermal circuits



$$\begin{cases} v_{2}''(\hat{x}) = \mu_{3}\Pi(\hat{x} - \frac{1}{2}) & v_{1}(0) = v_{2}(0) \\ v_{2}(1) = -\mu_{5}v_{2}'(1) - \mu_{5}\mu_{7}\mu_{6}^{-1}v_{2N}'(1) & v_{2N}''(0) = 0 \\ v_{1}''(\hat{x}) = -\mu_{2}\mu_{1}^{-2}\Pi(\hat{x}\mu_{1}^{-1} + \frac{1}{2}) & v_{2}(0) = v_{2N}(0) \\ v_{1}(-\mu_{1}) = \mu_{4}\mu_{1}v_{1}'(-\mu_{1}) & v_{2}(1) = v_{2N}(1) \\ v_{1}'(0) = \mu_{6}v_{2}'(0) + \mu_{7}v_{2N}'(0) & \mu_{7} \equiv \kappa_{N} / \kappa_{H} \end{cases}$$

## Impact on the design of micro/nanoharvesters

- Dirichlet and Neumann solutions recovered for ideally dissipating systems
- When dissipation is less than ideal, deviations from simplified models may be relevant both for micro and macro-harvesters depending on the characteristics of the heat source (power strength and insulation toward the ambient)
- From the material scientist viewpoint, once again ZT and  $\kappa$  should be thought as interdependent parameters.

# Summary and Outlook

- A model allowing for a general analysis of TEGs with no need for a priori assumptions about BC has been presented
- Standard solution are recovered as limiting cases
- A transitional regime where neither fixed-temperature or fixedheat flow BCs can be stipulated was found and modeled
- Predictions about optimal power outputs are found to depend on dissipation (well known) and on heat source strength and size (less obvious)



sinergy-project.eu

This work was supported by FP7-NMP-2013--SMALL-7, SiNERGY (Silicon Friendly Materials and Device Solutions for Microenergy Applications) Project, Contract n. 604169.

