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Abstract 

Thermal matching of thermoelectric generators (TEGs) to their heat sinks is well known to be a critical issue in the development 
of efficient harvesters. It is slightly less obvious that the development of suitable novel materials would possibly take advantage 
of their contextualization to prospective scenarios of deployment. In this communication a novel unified analysis of the heat 
equation is proposed. The thermal system was embedded into a thermostat while the heat source was taken as a part of the system 
itself, also explicitly accounting for the heat dissipation. A continual transition of thermal matching conditions from those 
predicted under Dirichlet boundary conditions (BCs) to those obtained under Neumann BCs was found, depending on the 
strength of the heat source and on the thermal resistances of the circuit branches. In all cases it was found that, independently of 
the thermal or thermoelectric circuit geometry, no single material may provide optimal TEG power density for any heat source 
strength and branch resistance. 
 
© 2014 Elsevier Ltd. All rights reserved. 
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1. Introduction 

Thermal matching of thermoelectric generators (TEGs) to their heat sinks is a well assessed issue in the making 
of efficient harvesting systems. Beyond a proper choice of the thermoelectric (TE) material, capable of providing the 
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highest conversion efficiency in the relevant temperature range, TEGs should also optimize their heat flow 
acceptance while keeping the temperature drop across the TE element as large as possible. For any given 
thermoelectric efficiency, exceedingly low thermal conductances lead actually to reduced thermal currents, and 
therefore to low electrical power densities [1, 2]; while high thermal conductances for finite thermal power inputs 
may cause low temperature differences between hot and cold sides of TE elements. To make the scenario even more 
complicated, optimal TEG design critically depends upon the assumptions made about the operative conditions the 
TEG will operate in, namely whether heat sink temperatures or heat flow can be taken as fixed.  

Aim of this paper is to propose a general approach to thermal matching in TEGs that overcomes any arbitrary 
assumption about boundary conditions (BCs) at TEG ends. In order to do that, a general scheme will be proposed 
embedding the heat sinks within the system to be analyzed. The entire system is then put in contact with the ambient, 
and the heat flow through dissipators may be analyzed by safely assuming that the ambient acts as a thermal bath. In 
this approach it will be shown how, further to TEG, heat sink thermal resistances and dissipaters, also the heat 
source strength plays a major role in the design of the harvesting devices. These results will be shown to be 
especially critical under two circumstances, namely when nanostructured TE elements (e.g. nanowires and 
nanolayers) are used or when TEGs are meant as microharvesters, converting heat from low thermal power sources. 

2. Model 

The maximum electric power w generated by a TE element operating between two heat sinks at TH and TC (< TH) 
is w Q , where η is the thermoelectric efficiency 

  
H H C

1
/

T
T T T

 (1) 

H CT T T  is the temperature difference across the TE element, 1 ZT with H C( ) / 2T T T , and the 
thermoelectric figure of merit ZT equals 2 2

th/ /T T RG (where σ and κ are respectively the electrical and 
thermal conductivities of the TE material, α is the Seebeck coefficient, and R and Gth are the TE electric and thermal 
conductances). Furthermore, the heat current Q  through the TE element is proportional to its thermal conductance, 
namely thQ G T .  

Under constant heat flow BCs (fixed Q ), both th/T Q G and therefore the thermodynamic TE efficiency 
increase with vanishing Gth. Accordingly, also w increases as Gth decreases, up to reaching Q  for unitary efficiency 
when ΔT diverges. Then, for any given TE material, optimal w is expected for low thermal conductances, namely 
for long TE legs and/or small TE cross sections. Instead, when fixed–temperature BCs are set, Q  and w are larger 
for larger Gth, namely thfor w G . In this case, optimal power output seemingly calls for large Gth values, 
suggesting short TE legs and/or large TE cross sections [3]. These well known, apparently paradoxical conclusions 
solve out considering that in no real circumstance do constant temperature (Dirichlet) or constant heat flow 
(Neumann) BCs strictly hold. Stated differently, neither real heat power sinks can guarantee fixed boundary 
temperatures for arbitrarily large thermal conductance, nor can they provide constant heat currents for extremely 
small Gth. However, solving the heat equation without such BCs is rather cumbersome, and the search for a 
transitional solution covering intermediate and more realistic operational conditions has led to iterative self–
consistent approaches [3, 4].  

A more general, possibly more rigorous approach to the problem is schematised in Fig. 1 for a pseudo–one–
dimensional system. The basic idea is to replace the standard picture, where the pertinent heat equation is solved 
setting system boundaries at the ends of the TE device, with a representation where the TEG and the two heat baths 
are embedded into the system. As a result, system boundaries are in thermal contacts with a heat sink of infinite 
thermal capacity (the ambient), capable of guaranteeing constant temperature BCs under any circumstance. 

Under steady state conditions heat equation reverts to Poisson’s equation [5], namely '' 0T x q x  where 
q(x) is the thermal power strength density. For a point source of strength Ω (in W/m3) located at x0 it is 

0q x x x  (where δ(x) is the Dirac delta function). Taking instead a uniform heat generation along a 
segment of length d centred at x0 one may write  
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where  Q is the strength of a linear heat source (in W/m2) while Π(z) is the normalized boxcar function: 
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that integrates to 

 ( )dq x x Q  (4) 

Heat dissipation at system boundaries is described using the so–called Newton’s law of cooling, namely scaling the 
heat current with temperature at the (convective) dissipaters as a( )h T T , where h  is the heat transfer coefficient 
(in Wm−2K−1) and Ta is the ambient temperature. Thus the system is completely described by the following set of 
ordinary differential equations:  
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where dTE and dH are the leg and the hot sink lengths, κTE and κH their thermal conductivities, and hh and ch are the 
heat transfer coefficients of the dissipaters at the hot and cold sides of the system [6]. Note that the Eq. (5) refers to a 
one-dimensional system, thus all extensive quantities are normalized to a sectional area. A heat source of power 
density qH(x) > 0 and a heat sink of power density qTE(x) < 0 are embedded in the system, representing respectively 
the thermal power source and the sum of the heat converted by the TEG into electric energy and other heat losses 
(e.g. lateral heat dissipation). Finally, temperature profiles are conveniently described by two different functions, 
T1(x) and T2(x), with domains respectively for x < 0 (thermal source) and x > 0 (TE leg).  

Figure 1. Schematics of (a) the conventional, (b) the non-shunted and (c) the shunted sink-embedding representation of a uni-leg TEG. Colored 
areas mark the actual extension of the systems. The standard model assumes either fixed boundary temperatures or fixed heat flow through the 
thermoelectric leg. In the present model the heat source is instead considered as a part of the system, so that no arbitrary assumption is needed 
about BCs at TEG ends, while Dirichlet BCs apply to the overall system (TEG + heat source + dissipaters). 
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In spite of the seeming simplicity of Eqs. (5), their analytical solution is rather cumbersome. To make it more 
physically readable it may be convenient to cast Eqs. (5) into a dimensionless form. To this aim, the reduced 
coordinate TEˆ /x x d  and two reduced temperatures a/ 1i iTv T (i = 1, 2) are introduced. Setting 
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and with some manipulations Eqs. (5) can be rewritten as  
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Table 1 displays the definitions of the dimensionless parameters in Eqs. (7) along with typical values of both 
dimensioned and dimensionless parameters. Furthermore, one may define az ZT and a dimensionless heat current 

H/ . Thus, the reduced electric power output reads H/w w .  
Solving the heat equation returns second–degree polynomials for v1 and v2, namely  
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and D 5 1 6 42 1 1 . The temperature at the leg ends computes therefore to  
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The heat flow (heat current) at ˆ 0x immediately follows:  
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     Table 1. Physical quantities and dimensionless parameters used in the model Eqs. (5) and (7), and range of values relevant to microharvesting 
applications. 

Quantity Units Range of values Parameter Definition Range of values 

κH, κTE  Wm-1K-1 [10-1, 102]    μ1 dH/dTE [10-1, 106]    

ch ,h h  Wm-2K-1 [10-1, 103]    μ2 θHdH/(TaκH) [3×10-8, 3×102]    

θH Wm-2 [1, 105]          μ3 θTEdTE/(TaκTE) [3×10-14, 3]          

θTE Wm-2 [10-2, 104]    μ4 H H h )/ ( hd  [10-3, 106]    

dH m [10-3, 10-1] μ5 TTE E c/ ( )hd  [10-2, 1010] 

dTE m [10-7, 10-2] μ6 κTE/κH [10-3, 103] 

 

Explicit expressions could also be written for the thermoelectric efficiency η and for the dimensionless power 
output w . However, they are very clumsy and will not be reported. Instead, special cases of interest for the actual 
optimization of TEGs will be commented upon in the next Section. 

3. Results 

3.1. Dirichlet and Neumann limits 

First, let us reconcile the results of the model with standard solutions of the heat equation under Dirichlet and 
Neumann BCs. For a highly dissipating cold side and a properly insulated hot side (1/μ4 = 0, μ5 = 0), taking κTE = κH 
= 10 W/mK and θH =104 W/m2 the hot temperature side ranges from Ta = 300 K to about 700 K ( h c 1v v v ) 
for large μ1 (  1). Instead, displays a constant value (variations smaller than 10−5) close to unity, as one would 
expect under fixed heat flow BCs (Fig. 2). A perfect quantitative agreement is thus found comparing solutions of 
Eqs. (7) to the standard solution of the heat equation under Neumann conditions. In the opposite limit (small μ1) the 
general solution is better approximated by the standard solution under Dirichlet conditions – namely the heat flow 
linearly decreases with dTE while the temperature drop across the TE leg remains constant.  

 
   

 

Figure 2: Dependency of (a) and (b) Δv vh − vc upon μ1 compared to standard solutions of the heat equation under Neumann and Dirichlet 
conditions. Plots assume a highly dissipating cold side ( ̄ 3

c
10h Wm−2K−1) and a properly insulated hot side ( ̄ 3

h
10h Wm−2K−1) and κTE = κH = 

10 Wm−1K−1. Two thermal power densities are considered, namely θH = 105 Wm−2 (full lines) and θH = 1 Wm−2 (dashed lines). Note that the 
dimensionless thermal current is independent of θH. 
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It is worth noting that for realistic values of μ1 Neumann BCs apparently well describe the heat transport regime. 
This is not surprising in view of the stipulations about heat dissipation at system boundaries. This picture quite 
changes when dissipation is less than ideal. Actually, heat sources less thermally insulated toward the ambient lead 
to deviations of 1( ) from constant values even at relatively high μ1 values. Correspondingly, the temperature drop 
across the TE leg departs from its linear trend, approaching an asymptotic limit (Fig. 3).  

This is consistent with a lower thermal current flowing from the source through the TE element. The very same 
result is obtained by decreasing θTE (qTE) — while instead only marginal changes in the 1( )  plot are observed by 
changing ch  (not shown). This evidence further underlines how in a relevant region of the μ–space neither Dirichlet 
or Neumann BCs properly describe heat conduction in TEGs. 

3.2. Optimization of power output 

Manifestly enough, optimal power generation geometries occur when a convenient compromise between heat 
flow maximization and high conversion efficiency is found. Under ideal dissipation conditions (namely perfect 
insulation at ˆ 1x , i.e. 41/  0 ; and perfect heat dissipation at ˆ 1x , i.e. μ5 = 0) the heat current accounts to 

2 1 3 6 /  while the conversion efficiency reads  

 1 3 6 2

1 6 1 6 3 2

( 2)( 2 )
4 ( ( 2) 2 )

 (12) 

and the reduced power output simplifies to  

 2 1 3 6 2

1 3 6 1 6 3 1 6

( 2)( 2 )
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where 1 1
3 2 1 64 (4 2 )z z . One easily verifies that 11 for 0 . Actually, for TEd the 

thermal resistance of the TE leg diverges so that for any non–zero thermal current the temperature drop across the 
TE also diverges. Since it has been shown that ideally dissipating systems may be properly modeled as if Neumann 
BC held, one may correspondingly expect power output to increase with the TE leg length. This is actually the case 
in the range of practical interest for microharvesting, where w  rapidly increases for vanishing μ1 values (Fig. 4(a)).  

For sub–ideal heat source insulation one observes instead (Fig. 4(b)) that the power output is basically 
independent of μ1 for low μ1 values. This finds a simple interpretation considering that for large leg lengths (high TE 
thermal resistances) the conversion efficiency reaches a plateau while some of the thermal power finds a lower 
impedance route at the outer heat source well. Thus, the heat current flowing through the TE leg cannot indefinitely 
increase. For higher μ1, instead, dissipation at ˆ 1x  becomes less important and ̃w increases as in the ideal case. 
Since Δv levels up in the same μ1 range where dissipation of the hot source toward the ambient begins affecting the 
heat flow through the TE leg, a small inflection of the output power occurs upon transition between the regimes of 
constant and increasing power output.  

 

Dario Narducci
Evidenzia

Dario Narducci
Evidenzia

Dario Narducci
Evidenzia



480   Dario Narducci  /  Materials Today: Proceedings   2  ( 2015 )  474 – 482 

Figure 3: Dependency of (a) and (b) Δv vh − vc upon μ1 at different levels of thermal insulation of the hot source, with a highly dissipating 
cold side ( ̄ 3

c
10h  Wm−2K−1). Thermal conductivities and thermal power densities are κTE = κH = 10 Wm−1K−1, and θH=105 Wm−2. 

Figure 4. Variation of the dimensionless power output with μ1and μ2 under (a) ideal insulation of the heat source  (1/μ4 = 0) or (b) sub--ideal 
insulation (μ4  = 10-2). Heat dissipation on the cold end of the TE element is assumed as ideal (μ5 = 0). Thermal conductivities of the TE element 
and of the heat source are taken equal to each other (μ6 = 1). 

   

3.3. Thermal shunts 

In real systems, heat flow shunts normally occur through air (in bulk TEGs) or through the substrate (in thin film 
or nanostructured TEGs) – and through the TEG package as well. Shunts can be easily accounted for in the present 
model. Forking the thermal circuit between x = 0 and x = dTE (Fig. 1(c)) into thermoelectrically active and non–
thermoelectrically active branches (hereafter referred to as T– and N–branches, resp.), heat equation for the shunted 
system may be obtained by adding to Eqs. (5)   
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and replacing the fifth of  Eqs. (5)  with  

 H 1 2 N 2NTE'(0)  '(0) '(0)T T T  (15) 

where T2N(x) is the temperature profile over the N branch and κN is its thermal conductivity. Reduced variables 
may be defined also in this case, leading to the additional parameter μ7 κN/κH. The dimensionless equation reads 
then  
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where 2N 2N a/ˆ 1v Tx T . It integrates to give  
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Eqs. (17) and (18) obviously reduce to Eqs. (10) and (11) for μ7 = 0. A full analysis of the shunted system 
exceeds the aims of this paper. Suffice here to say that in the Dirichlet and Neumann limits one may easily verify 
that also in the presence of a shunt the solution recovers the standard solution for fixed–temperature and fixed–heat 
flow BCs. 

4. Discussion and Conclusions 

The numerical results obtained through the model may be of guidance to design thermoelectric generators, either 
bulk TEGs and nanostructured devices. From inspection of Fig. 4 one clearly realizes the already well–assessed role 
played by thermal dissipation not only to guarantee steady and efficient heat conversion – but also to properly size 
the device leg. Specifically, for any given heat dissipation efficiency on the cold side one may compute the optimal 
leg length by maximizing the power output. The optimal dTE is found to depend on the heat strength of the hot sink 
as well as on its thermal insulation toward the ambient. This is especially important for nanostructured devices (e.g. 
nanowires), where the design of long and continuous TE element is rather critical. For harvesting applications 
relying upon small–budgeted heat sources (e.g. for body heat harvesting), oversized elements are of no use unless 
excellent heat dissipation can be guaranteed. In extreme situations where large μ2 values are reached, relatively 
shorter TE legs may paradoxically provide larger power outputs. But also in more conventional situations, no 
advantage is achieved by increasing dTE as the achievable power density levels up. More in general, a conclusion 
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one may draw is that optimal device design depends not only on the characteristics of the heat dissipator but is also 
remarkably subjected upon the heat source strength and geometry. This shows once again that, stepping from device 
physics to material characteristics, optimal TEG design suggest to tailor TE material properties not only in view of 
high thermoelectric efficiency (high ZT) but also considering the more complicated interplay between efficiency and 
thermal conductivity. 

The present analysis, while indirectly covering also non–one–dimensional issues such as lateral dissipation and 
thermal shunts, does not allow to take apart the heat sink associated to thermoelectric conversion from heat current 
leaks correlated to device packaging. Splitting qTE requires the solution of the Domenicali equation [7], that is 
currently under way and that will be reported in a forthcoming article.  
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