

Silicon nanowires for thermoelectric harvesting applications: growth, integration and characterization

<u>G. Gadea</u>, A. Morata, J.D. Santos, I. Domnez, C. Calaza, M. Salleras, D. Dávila, L. Fonseca, A. Tarancón

Lille, EMRS May 2016

Thermoelectric energy harvesting with silicon nanowires

Si NWs are promising materials TE energy harvesting because:

- Their high ZT with respect bulk
- The high availability of silicon
- The easy integrability in micro-technology (which is silicon-based!)

Thermoelectric energy harvesting with silicon nanowires

Integrating NWs in thermoelectric devices presents challenges:

- Contacting dense arrays of NWs / cm²
- NWs with low contact resistance
- Submitting NWs to large ΔT
- Using technology friendly techniques

For this we use a micro-machined planar thermoelectric generator (µTEG)

Silicon nanowire morphology control

Increasing the gold amount/exposure time, the nanoparticle size increases and while the density decreases

Silicon nanowire morphology control

From G. Gadea et al., Nanotechnology, 26 (2015) 195302

Integration in devices and effect of diborane flow

Integration in devices and effect of diborane flow

Single NW electrical measurements

Single NW thermal AFM measurements

Single NW thermal AFM measurements

Conclusions

- 111 Si NWs were grown. Their properties could be controlled through:
 - Au catalyst deposition (selective deposition, density and size)
 - CVD growth (length, doping)
- Si NWs arrays were integrated in thermoelectric microgenerators and characterized
 - Seebeck coefficient was 620 µV/K
 - Higher dopant flow leaded to higher power (25 μ W/cm²)
- Single Si NWs were integrated in thermoelectric characterization structures
 - Electrical resistivity was $5.3 \cdot 10^{-3} \Omega \cdot cm$ and negligible electrical contact resistance
 - Thermal conductivity was 4 W/m·K by, by means of **thermal AFM along a single wire**
- Combining the results a ZT of 0.54 at room temperature was obtained. ~ 25 times higher than bulk silicon value

Acknowledgements

- A. Morata M. Salleras
- J.D. Santos
 D. Dávila
- I. Domnez
 L. Fonseca
- C. Calaza
 A. Tarancón

And to IRECs NI-SOFC group

Growth of Si-Ge NWs for future integration in µTEG

