

Electrostatic Vibration Energy Harvesting Microsystems for Self-Powered Minimally Invasive Pacemakers

E. Lefeuvre, S. Risquez, J. Wei, B. Vysotskyi,

P. Gaucher, D. Aubry, F. Parrain, M. Woytasik, H. Mathias and F. Costa

- 1. Leadless Pacemakers
- 2. 3D Electrostatic Energy Harvester
- 3. Frequency-up Energy Harvester
- 4. Interface Circuits

Leadless Pacemakers

CURRENT PACEMAKER

Volume $\sim 8 \text{ cm}^3$

 \rightarrow

LEADLESS PACEMAKER

Volume $< 1 \text{ cm}^3$

Medtronic (2011) Battery – 7 years

EBR (2010) Ultrasound external source

Nanostim, St Jude (2011) Battery – 7 years 3

Implantation Procedure

Mechanical Energy

Available Mechanical Energy from Heart Wall Motion?

Acceleration vs. time

Deterre et al., 2011

Harvester Power vs. resonant frequency

Estimated Mechanical Power:

 $\sim 25 \ \mu W/gram \ [20 \ Hz - 30 \ Hz]$

Energy Harvester Requirements:

- No magnetic components \rightarrow MRI compatibility
- Long term reliability \rightarrow 20 years or more... and +600 million heartbeat
- Volume < 0.5 cm^3
- Power > $5\mu W$
- Fit in a 6 mm-diameter capsule \rightarrow Cathether implantation

Interest of Electrostatic Transduction:

- Energy conversion independant of the transducer mechanical stress

 \rightarrow larger degrees of freedom (shape, resonant frequency, power)

- Well adapted to miniaturization

Electrostatic Energy Harvesting MEMS: mostly 2D

Planar structures:

→ Adapted to cylindrical packaging of leadless pacemakers?

[Ms. Sarah Risquez Ph.D Work]

Proposed 3D MEMS: Vertical Comb Structure

- One layer

- Several layers

05/05/2016

E-MRS Spring Meeting - Lile

Design variables: w, hi, hf, g, number of layers

Design:

Design:

Behavioral Modelling (equivalent circuit representation):

Mechanical part

Electrical part

Behavioral Modelling (equivalent circuit representation):

Copper sputtering

Microfabrication Process: electroplated nickel (structural) and copper (sactificial)

Leadless

First Prototypes:

Frequency-up Energy Harvester Interface Circuits

Frequency-up \rightarrow Larger Bandwidth & Higher power density [Mr. Bogdan Vysotskyi Ph.D Work]

Piezo converter

Spring

Suspension

Mechanical

Stopper

Coi

Upper FIG Voltage

Magnetic Force

Displacement

Time

(b)

Piezo-Magnetic converter

(a) 05/05/2016

Mass

Actuation

Frequency

Increased

Generator

(FIG)

Magnet

E-MRS Spring Meeting - Lile

₩~>

Principle used here: Electrostatic pull-in and pull-out

 $\delta-\text{max}\,\text{displacement}$ of low frequency oscillator

Xcr – max displacement of high frequency oscillator before pull-out

$$F_{elec} = \frac{\varepsilon_0 A V^2}{2(\frac{h}{\varepsilon_r} + X)^2}$$

 $F_{elastic} = K \cdot X$

Transmitted energy:

$$E_T \approx K X_{cr} \left(\frac{X_{cr}}{2} - \frac{3h}{\varepsilon_r}\right)$$

Principle: seismic oscillator gets excited from external medium and transmits energy to high frequency oscillator, which generates electricity

Modelling and simulation:

Example of one oscillator

Full model: 2 mechanically coupled oscillators + electrostatic attraction

Excitation: sine @ 25Hz, 1g amplitude

Mbistable=220mg, fHF=4000Hz Vbias=1.2V

- Excitation at low frequency (close to heartbeat)
- Frequency up-conversion is observed
- Energy transfer as a result of pull-in and pull-out

- Capacitance variation between 10pF and 100pF
- Good periodicity of variation
- Harvested average power: 1.5 μ W

Fabricated devices:

To be tested soon!

Interface circuits without magnetic components [Ms. Jie Wei Ph.D work]

Requirements for pacemaker application:

- Low power consumption & high efficiency at microwatt scale
- No magnetic components
- High reliability

Typical Charge-Voltage Diagram

- -- Voltage constrained
- -- Charge constrained
- -- Charge pump

State of the Art:

 \rightarrow Very challenging implementation at microwatt scale!

Proposed interface circuit:

DC bias: $V_{C1} = n \cdot V_{DC}$

E. Lefeuvre, Patent n°WO2016009087A1, 2014

Q-V Cycles and Power:

Experimental results: (Vcstore = 3.3 V)

n=3

05/05/2016

E-MRS Spring Meeting - Lile

- New **3D** Electrostatic **Energy harvester** with high energy density (\sim 70 μ W/cm³) (Sarah Risquez Ph.D. work)
- New Frequency-up Electrostatic Energy Harvester concept

(Bogdan Vysotskyi Ph.D. Work)

 New ultra-low power interface circuit (76% efficiency at 10 nanowatts average power!) (Jie Wei Ph.D. work)

Remaining challenges for pacemaker application:

- Knowledge of human heart wall acceleration
- Lifetime of the device (20 years, +600 million hearbeat)
- Reliability
- Cost

FUNDING

NMP programme - Grant agreement n°604360

