Variable capacitor energy harvesting based on polymer dielectric and composite electrode

Robert Hahn¹, Yujia Yang¹, Uwe Maaß¹, Leopold Georgi², Joerg Bauer¹, and K.-D. Lang²

¹Fraunhofer IZM, Gustav-Meyer-Allee 25, 13355 Berlin, Germany ²Technische Universität Berlin, TiB4/2-1, Gustav-Meyer-Allee 25, 13355 Berlin, Germany

IZM

May 2016

Agenda

- Introduction
- The FP7 project MATFLEXEND
- Capacitive harvesting overview
- Measurements
- Demonstrator

Micro Energy at Fraunhofer IZM, Berlin

Micro fuel cell

Fuel cell stacks

Micro batteries

Micro DC-DC converter coils

Human based mechanical energy harvesting

Many challenges:

- Low frequency, random motion
- Low and medium forces, mechanical adaption
- Devices need to be tunable or broadband
- Power output limited by device size
- Conversion effectiveness needs to be as high as possible

Many devices have been shown:

Electrostatic harvester comparison

Dielectric elastomers:

- mechanical force stretches the dielectric, increases capacitor area and reduces dielectric thickness
- mechanical fixtures are required
- high voltage, high efficiency
- relative permittivity: ca. 3

Electrostatic MEMS

- interdigitated electrodes a) area overlap b) gap closing
- mostly MEMS
- relative perittivity: ca. 1

MATFLEXEND

- capacity is changed by change of top electrode area
- relative permittivity: ca. 3 ... 300
- flexible and low cost...

 $E = \frac{1}{2} \cdot C \cdot V^2$

Electrostatic harvester comparison

Piezo, electrete and triboelectric:

True emf, electric charges are being generated

Dielectric elastomers, Electrostatic MEMS and MATFLEXEND:

These are variable capacitors which have to be pre-charged

MATFLEXEND Project Summary

Matflexend investigates

New materials which enable capacitive-mechanical energy harvesting based on

- high-k dielectric composites and
- electrically conducting elastomers as variable capacitor electrodes

Capacitive Harvesting

with variable electrode area

How much energy can be harvested ?

$$\Delta E = \frac{1}{2} V_{max}^{2} \left(C_{max} - C_{min} \left(2 - \frac{C_{min}}{C_{max}} \right) \right)$$

high power but the conversion cycle circuit requires sophisticated circuit

$$C_{max} = 10 \text{ nF}$$

 $C_{min} = 0$
V = 400 V
dE = 0.8 mWs
f= 0.5 Hz → P = 0.4 mW

(final demonstrator: 3 nF achieved)

AE.

Influence of parasitics

- R_s serial resistance, mainly ohmic resistance of the conductive elastomer electrode
- R_p parallel resistance, leakage current through the dielectric

MATFLEXEND variable capacitor

Voltage and current waveforms

Design example of circuit analysis

Case 1

Case 2

MATFLEXEND material choice

- Composite polymers which can be printed
- Thin, mechanically flexible packaging
- Low cost fabrication

- Smaller capacity compared to metal electrode
- Material fatigue lower efficiency due to elastic/ viscoelastic deformation
- Adhesive forces between dielectric and elastomer electrode

Elastomer electrode configuration

3D shape (molded) planar, rough planar, smooth

- material strain generates restoring force
- thicker device, lower power density

- thin device, high power density, stackable
- Iower specific capacity (rough electrode
- additional spacer/spring elements required for detaching

Influence of material morphology and surface roughness

Composite electrode

Dielectric

Entrapped air at interface

FEM Maxwell simulation of composite electrode on dielectric

Field simulations of composite electrode on dielectric

- thin layers of dielectric over the nano-conductors (fin offset) degrade capacity greatly
- even if there is no fin offset a large distance between the fibers (10 µm) reduces the resulting capacity to a great extend

Measurements

- Capacity of composite electrode as function of mechanical pressure
- Current flow during cycling
- Voltage rise at output capacitor

Capacity change with 3D shaped electrodes

BaTiO₃-dielectric

Simultaneous measurement of force, capacity and electrode area

Specific capacity on Mylar dielectric (2)

Electrode	F N	l _{leak} nA	C pF/cm²
PDMS+filler MATFLEXEND	5	< 1	143
PolyHIPE covered		< 1	230
PolyHIPE noncovered		< 1	237
MATFLEXEND filled elastomer	10	< 5	398
	50		578
	100		720
Reference, silicone	5	< 5	250
	10		280
	50		640
	100		680

Experimental Setup

Fraunhofer

The diodes of the harvesting circuit

Diodes leakage current

junction capacity

Charging the output capacitor

Fraunhofer

Harvesting

Current through $C_{harvest}$ and voltage at output capacitor $C_{max} = 508 \text{ pF}, F_{max} = 30 \text{ N}, A = 1 \text{ cm}^{2}$, composite dielectric

Influence of polarity

- Polarity B gives larger voltage steps
- Tribo-electricity ?
- More pronounces effect for composite dielectric

Demonstrator

Fabrication of Harvester Device

Stacked capacitor built up from PI/Cu-stripes with dielectric and conductive elastomer

- 4 separated L-shaped dielectrics (A)
- 3 separated linear dielectrics (B)
- 4 dielectrics without separation

Example of variant C

Assembly of harvester demonstrator

insulation (2)

Harvester demonstrator packaging

Packaging of fixed folded stack by a polyolefin heat shrink tube

- Maximum outer dimension of the package 35 x 20 x 3 mm³
- 4 layer stack: 2.3 2.8 nF
 3 layer stack: 1.5 2.0 nF
 (manually pressed)

Characterization of Harvester Demonstrator

Applications

SMARTEX + EURECAT

Conclusions

- Capacitive energy harvesting principle with elastomer electrode proven.
- Numerical simulation was used to identify the influence of material parameters and parasitic circuit elements on the harvester performance as function of actuation frequency.
- Charges between 25 and 70 nAs per cm² have been transferred per cycle at 100 V/200 V.
- Novel composite materials show better mechanical robustness and maximum capacity at lower force. Point defects of printed dielectrics lead to leakage current – deposition process must be improved.
- Demonstrators with $C_{max} = 1.5 \dots 3 \text{ nF}$ have been fabricated

Acknowledgment

Dr Hin Chun Yau, Dr Hannah Leese Prof Milo Shaffer Department of Chemistry m.shaffer@imperial.ac.uk

Imperial College London

This project is funded by the European Union

Thank you for your attention

Contact: Robert Hahn Fraunhofer Institute for Reliability and Micro Integration Gustav-Meyer-Allee 25 13355 Berlin, Germany robert.hahn@izm.fraunhofer.de +49 30 46403 611

