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Outline 
Redundant TEG strategies: 
• bottom-up, by VLS 
• top-down by non-critical lithography 
Modeling set up to optimize wire lengths upon heat source 
characteristics 
All technologies are IC-compatible to support integration in the 
final prototype 
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Strategy and device layouts 

Goal: Obtain all‐silicon thermoelectric micronanogenerators 
by means of the integration of silicon based NW arrays (as 
thermoelectric material) into a Si micromachined structure 
able to exploit a waste heat source to develop an internal 
thermal contrast between two isolated silicon parts. 
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Bottom-up strategy 
 
NWs will be grown with a VLS-CVD method that allows the 
in-situ integration of large density arrays of NWs within a 3D 
structure without specific nanolithography techniques. 
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Microemulsion Galvanic 
Displacement 

Gao et al, J. Am. Chem. Soc. 127, 4574 (2005) 
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To seed the surface with gold nanoparticles, devices are 

1. dipped in HF in order to remove native oxide from trenches 

2. dipped in microemusions during a controlled dipping time. Gold NPs are 
formed 

3. annealed to remove the remaining surfactant 
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1 – Devices are dipped in HF in order to remove thermal oxide formed during calcination 

HF 5%, 0,5 – 2 min 
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CVD-VLS growth of NWs 
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1 – Devices are dipped in HF in order to remove thermal oxide formed during calcination 

2 – Devices are loaded into CVD and exposed to silane. Silicon nanowires are grown by 

VLS synthesis 

600 ºC, 2.5 Torr, 1 h 
growth, 1.5% SiH4, 1.5% 
HCl,  30 ppm B2H6 in H2 

CVD-VLS growth of NWs 
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600 ºC, 2.5 Torr, 1 h 
growth, 1.5% SiH4, 1.5% 
HCl,  30 ppm B2H6 in H2 

 Formation of Au-Si eutectic alloy 

 Catalytic cracking of silane at alloy surface 

 Diffusion of Si across droplet 

 Precipitation at alloy-Si interphase 
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1 – Devices are dipped in HF in order to remove thermal oxide formed during calcination 

2 – Devices are loaded into CVD and exposed to silane. Silicon nanowires are grown by 

VLS synthesis 

CVD-VLS growth of NWs 
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600 ºC, 2.5 Torr, 1 h 
growth, 1.5% SiH4, 1.5% 
HCl,  30 ppm B2H6 in H2 

CVD-VLS growth of NWs 

1 – Devices are dipped in HF in order to remove thermal oxide formed during calcination 

2 – Devices are loaded into CVD and exposed to silane. Silicon nanowires are grown by 

VLS synthesis 
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Membrane removal in HF 

After growing Si NWs in a µTEG device a wet attack in HF must be performed in 

order to remove membrane and passivation silicon oxide – which covers contacts. 

From CVD growth After wet HF attack 

10 
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Membrane removal in HF 

After growing Si NWs in a µTEG device a wet attack in HF must be performed in 

order to remove membrane and passivation silicon oxide – which covers contacts. 

From CVD growth After wet HF attack 
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CVD-VLS – Nanowire control 

• Growth rate increases with T 

• Verticality has a maximum in 630 ºC 

• Well aligned horizontal Si NWs were obtained in trenches 

520 ºC 570 ºC 600 ºC 630 ºC 725 ºC 



NMP3-SL-2013-604169 

Bottom-up strategy – Device layout 
Structural core will be a Si device micromachined in such a way 
that hot and cold areas develop when resting on a hot surface. 

Hot area: surrounding rim  Cold area: suspended platform.  
Thermocouple: nanostructured silicon and thin metal film.  

T hot 

T cold 
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Bottom-up strategy – Device layout 
• SOI wafers used as starting material. Device layer <110>, so 

that parallelograms with <111> oriented walls can be built .  
• Typical size will be 1 mm, with 10 µm trench widths.  Depth 

is fixed by device layer thickness, which will be around 10-
15 µm to accommodate a large number of NWs.  
 

Internal metal collector 

External metal collector 

Suspended silicon platform Si NWs 

SOI Device layer 

SOI buried oxide 

Micromachined SOI handle wafer 
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NWs will be grown with a CVD method within nanometric 
cavities built up by controlled etching and filling of recessed 
regions (without nanolithographic steps). 

Top-down strategy 
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Top-down layout with lateral NWs: 

Suspended 
silicon mass 

Anchors Thermal radiator 

Nanostructured 
thermoelements 

N-type Si NWs P-type Si NWs 

SiO2 

Si3N4 
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Top-down fabrication of lateral NWs: 
1. Si substrate 2. SiO2 growth 3. Si3N4 deposition 4. SiO2 deposition 

5. Si3N4/SiO2 deposition 6. Si3N4/SiO2 RIE 7. SiO2 wet etching  8. Poly deposition  

9. Poly etchback 10. SiO2 deposition 11. P-type doping 12. N-type doping 

13. SiO2 deposition 14. SiO2 etching 15. Al patterning 
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From aims to practice 
 

• NWs have high Rth (≈ 106 K W-1nm-1 /NW)  
• For ΔT = 50 K, max heat acceptance is ≈ 25 pW/NW @ wire length of 1 mm  
• If η = 5 % a target power output of 10 μW/cm2 requires a wire density of 

108 cm-2, i.e. a wire spacing of about 1 μm 
 

Critical design issues are: 
• optimal wire length 
• optimal geometry (lateral or vertical) 

 

21 
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The model 
Choice of boundary conditions leads to contrasting design indications: 

Wel = WthηTE = (ΔT/Rth)ηTE  
• setting fixed-T BC’s: Wel increases as Rth decreases 
• setting fixed-heatflow BC’s: Wel increases as Rth increases 

 
 
 
 
 
 

 
In the model the system encompasses the TEG, the heat source,  and the 
heat sink. The whole system is in thermal contact with the ambient. Fixed-T 
(TA) BC are there bound to apply. 

Ta                                                   TH                                    TC                                
Ta 

−∞            −dH                 0                                     dTE                  +∞ 
T1(x)                     T2(x) 

Ta                                               TH                                   TC                     Ta 

T1(x)                       T(x) 
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Model equation 
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Reconciling with Neumann and Dirichlet 

φ φ

µ

θ

≡

≡
1 H TE

H

/

/

d d

For ideally dissipating cold 
sides and perfectly insulated 
heat sources (1/ μ4 = μ5 = 0) 
constant heat flow BCs are 
recovered for μ1>1 
(Neumann) 

TEG 
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µ
∆ ≡ −
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T
d

For ideally dissipating cold 
sides and perfectly insulated 
heat sources (1/ μ4 = μ5 = 0) 
constant temperature BCs are 
recovered for μ1<1 (Dirichlet) 

Ideal dissipation conditions 
show that proper BCs switch 
upon dH/dTE ratio 

TEG 

Reconciling with Neumann and Dirichlet 
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Dissipation efficiency 

If the hot side is not perfectly insulated (or the heat source strength decreases) constant 
temperature/heat flow BCs do not apply around μ1= 1. Since typical μ1 for TEGs are 
between 10-1- 101 (bulk) and 106 (micro/nano), application of standard analyses may 
mislead optimization of leg lengths.  

TEG 
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Power output κ
θ

µ θ≡
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ZT, PF, κ, and leg lengths 
The solution of the ODE’s reads           
 

                                            with  
 
 
 
 
Since κ’s and d’s enter the solution independently, the 
optimization of the TEG geometry will depend on material 
properties not only through ZT but also through PF and κ 
separately. 
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D. Narducci, J. Nanoeng. Nanomanuf. 1 (2011) 63−70. 
D. Narducci, Appl. Phys. Lett. 99 (2011) 102104. 
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Impact on the design of micro/nanoharvesters 
 

• Dirichlet and Neumann solutions recovered for ideally dissipating systems 
• When dissipation is less than ideal, deviations from simplified models may 

be relevant both for micro and macro-harvesters depending on the 
characteristics of the heat source (power strength and insulation toward 
the ambient) 

• Expected power outputs are consistent with final device/application 
requirements (10 μW/cm2) 

• From the material scientist viewpoint,  once again ZT and κ should be 
thought as interdependent parameters.   
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Summary 

• Two redundant TEG strategies developed: 
– bottom-up, by VLS 
– top-down, by non-critical lithography 

• Modeling set up to optimize wire lengths on the heat source 
• All technologies are IC-compatible to support integration in 

the final prototype 
• Technologies are flexible enough to be redeployed in other 

contexts 
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