

Outline

Redundant TEG strategies:

- bottom-up, by VLS
- top-down by non-critical lithography

Modeling set up to optimize wire lengths upon heat source characteristics

All technologies are IC-compatible to support integration in the final prototype

Strategy and device layouts

Goal: Obtain all-silicon thermoelectric micronanogenerators by means of the integration of silicon based NW arrays (as thermoelectric material) into a Si micromachined structure able to exploit a waste heat source to develop an internal thermal contrast between two isolated silicon parts.

Bottom-up strategy

NWs will be grown with a VLS-CVD method that allows the in-situ integration of large density arrays of NWs within a 3D structure without specific nanolithography techniques.

Microemulsion Galvanic Displacement

To seed the surface with gold nanoparticles, devices are

- 1. dipped in HF in order to remove native oxide from trenches
- dipped in microemusions during a controlled dipping time. Gold NPs are formed
- 3. annealed to remove the remaining surfactant

NMP3-SL-2013-604169

1 – Devices are dipped in HF in order to remove thermal oxide formed during calcination

- 1 Devices are dipped in **HF** in order to remove thermal oxide formed during calcination
- 2 Devices are loaded into **CVD and exposed to silane**. Silicon nanowires are grown by VLS synthesis

- 1 Devices are dipped in **HF** in order to remove thermal oxide formed during calcination
- 2 Devices are loaded into **CVD and exposed to silane**. Silicon nanowires are grown by VLS synthesis

- 1 Devices are dipped in **HF** in order to remove thermal oxide formed during calcination
- 2 Devices are loaded into **CVD and exposed to silane**. Silicon nanowires are grown by VLS synthesis

Membrane removal in HF

After growing Si NWs in a μ TEG device a wet attack in HF must be performed in order to remove membrane and passivation silicon oxide – which covers contacts.

Membrane removal in HF

After growing Si NWs in a μ TEG device a wet attack in HF must be performed in order to remove membrane and passivation silicon oxide – which covers contacts.

CVD-VLS – Nanowire control

- Growth rate increases with T
- Verticality has a maximum in 630 °C
- Well aligned horizontal Si NWs were obtained in trenches

Bottom-up strategy – Device layout

Structural core will be a Si device micromachined in such a way that hot and cold areas develop when resting on a hot surface. **Hot area:** surrounding rim **Cold area:** suspended platform. **Thermocouple:** nanostructured silicon and thin metal film.

Bottom-up strategy – Device layout

- SOI wafers used as starting material. Device layer <110>, so that parallelograms with <111> oriented walls can be built .
- Typical size will be 1 mm, with 10 μm trench widths. Depth is fixed by device layer thickness, which will be around 10-15 μm to accommodate a large number of NWs.

Top-down strategy

NWs will be grown with a CVD method within nanometric cavities built up by controlled etching and filling of recessed regions (without nanolithographic steps).

Top-down layout with lateral NWs:

Top-down fabrication of lateral NWs:

1. Si substrate

9. Poly etchback

13. SiO₂ deposition

6. Si_3N_4/SiO_2 RIE

10. SiO_2 deposition

14. SiO₂ etching

3. Si₃N₄ deposition

7. SiO_2 wet etching

11. P-type doping

15. Al patterning

4. SiO_2 deposition

8. Poly deposition

12. N-type doping

Fig. 5. SEM images at different magnifications of the nanowire after detachment from the hosting structure.

From aims to practice

- NWs have high $R_{\rm th}$ ($\approx 10^6$ K W⁻¹nm⁻¹ /NW)
- For $\Delta T = 50$ K, max heat acceptance is ≈ 25 pW/NW @ wire length of 1 mm
- If $\eta = 5$ % a target power output of 10 μ W/cm² requires a wire density of 10⁸ cm⁻², i.e. a wire spacing of about 1 μ m

Critical design issues are:

- optimal wire length
- optimal geometry (lateral or vertical)

The model

Choice of boundary conditions leads to contrasting design indications:

$$W_{\rm el} = W_{\rm th} \eta_{\rm TE} = (\Delta T / R_{\rm th}) \eta_{\rm TE}$$

- setting fixed-T BC's: W_{el} increases as R_{th} decreases
- setting fixed-heatflow BC's: W_{el} increases as R_{th} increases

Model equation

$$\begin{cases} \kappa_{\text{TE}} T_2''(x) + q_{\text{TE}}(x) = 0 \\ \overline{h}_c(T_2(d_{\text{TE}}) - T_A) = -\kappa_{\text{TE}} T_2'(d_{\text{TE}}) \\ \kappa_{\text{H}} T_1''(x) + q_{\text{H}}(x) = 0 \\ \hline{h}_h(T_1(-d_{\text{H}}) - T_A) = \kappa_{\text{H}} T_1'(-d_{\text{H}}) \\ \kappa_{\text{TE}} T_2'(0) = \kappa_{\text{H}} T_1'(0) \\ T_1(0) = T_2(0) \\ q_{\text{H}}(x) \equiv \frac{\theta_{\text{H}}}{d_{\text{H}}} \Pi\left(\frac{x}{d_{\text{H}}} + \frac{1}{2}\right) > 0 \\ q_{\text{TE}}(x) \equiv -\frac{\theta_{\text{TE}}}{d_{\text{TE}}} \Pi\left(\frac{x}{d_{\text{TE}}} - \frac{1}{2}\right) < 0 \end{cases}$$

Reconciling with Neumann and Dirichlet

Reconciling with Neumann and Dirichlet

Dissipation efficiency

If the hot side is not perfectly insulated (or the heat source strength decreases) constant temperature/heat flow BCs do not apply around μ_1 = 1. Since typical μ_1 for TEGs are between 10⁻¹- 10¹ (bulk) and 10⁶ (micro/nano), application of standard analyses may mislead optimization of leg lengths.

For sub-ideal hot side insulation or low heat source strength, power output remains constant in the $\mu_1 \rightarrow 0$ limit. Thus, TE legs should fulfill $\frac{d_{\text{TE}}}{d_{\text{H}}} < \mu_1^*$ (relevant for bulk TEGs).

ZT, PF, κ, and leg lengths

The solution of the ODE's reads

$$v_{i}(\hat{x}) = \sum_{j=0}^{2} (\beta_{ji} / \beta_{D}) \hat{x}^{j} \text{ with } \beta_{ij} = \beta_{ij}(\dots \mu_{k} \dots)$$

$$\mu_{1} \equiv d_{H} / d_{TE} \qquad \mu_{2} \equiv \theta_{H} d_{H} / (T_{A} \kappa_{H}) = \theta_{H} R_{H} / T_{A}$$

$$\mu_{6} \equiv \kappa_{TE} / \kappa_{H} \qquad \mu_{3} \equiv \theta_{TE} d_{TE} / (T_{A} \kappa_{TE}) = \theta_{TE} R_{TE} / T_{A}$$

$$\mu_{4} \equiv \kappa_{H} / (d_{H} \overline{h}_{h}) = 1 / (R_{H} \overline{h}_{h}) \qquad \mu_{5} \equiv \kappa_{TE} / (d_{TE} \overline{h}_{c}) = 1 / (R_{TE} \overline{h}_{c})$$

Since κ 's and d's enter the solution independently, the optimization of the TEG geometry will depend on material properties not only through *ZT* but also through PF and κ separately.

D. Narducci, J. Nanoeng. Nanomanuf. 1 (2011) 63–70.D. Narducci, Appl. Phys. Lett. 99 (2011) 102104.

Impact on the design of micro/nanoharvesters

- Dirichlet and Neumann solutions recovered for ideally dissipating systems
- When dissipation is less than ideal, deviations from simplified models may be relevant both for micro and macro-harvesters depending on the characteristics of the heat source (power strength and insulation toward the ambient)
- Expected power outputs are consistent with final device/application requirements (10 μ W/cm²)
- From the material scientist viewpoint, once again *ZT* and *κ* should be thought as interdependent parameters.

Summary

- Two <u>redundant</u> TEG strategies developed:
 - bottom-up, by VLS
 - top-down, by non-critical lithography
- Modeling set up to optimize wire lengths on the heat source
- All technologies are IC-compatible to support integration in the final prototype
- Technologies are flexible enough to be redeployed in other contexts

The WP2 Team

CSIC

Luis Fonseca, Carlos Calaza, Marc Salleras, Jaume Esteve, Gonzalo Murillo, Carlos Camargo

IREC

Albert Tarancon, Alex Morata, M. Torrell, G. Gadea, J.D. Santos, M. Fehse

IMM-CNR Alberto Roncaglia, Fulvio Mancarella

University of Milano Bicocca Dario Narducci, Laura Zulian

sinergy-project.eu Contact: luis.fonseca@imb-cnm.csic.es